

Ciências ULisboa

Faculdade de Ciências da Universidade de Lisboa

Eng Energy & Environment

Professor: Carla Silva (camsilva@ciencias.ulisboa.pt)

Wednesdays

16h-19h00

Room: 8.2.13

Professor: Carla Silva (<u>camsilva@ciencias.ulisboa.pt</u>)

5 challenges!

Oral evaluation: discussing the challenges

07-06-2022

27-06-2022

20-07-2022

IEA Bioenergy Task 42 "Biorefineries"

"Biorefining is the sustainable processing of biomass into a spectrum of marketable products and energy".

The biorefinery concept: Using biomass instead of oil for producing energy and chemicals, Energy Conversion and Management, Volume 51, Issue 7, 2010, Pages 1412-1421, ISSN 0196-8904, https://doi.org/10.1016/j.enconman.2010.01.015

Francesco Cherubini Professor, Director of the Industrial Ecology Programme

Department of Energy and Process Engineering
✓ francesco.cherubini@ntnu.no
J +47 73598942
Realfagbygget, E4-142, Gløshaugen, Høskoleringen 5

Ciências ULisboa

https://www.youtube.com/watch?v=rrldwVGmmy4

ALLOCATION – MASS BASIS

ALLOCATION – ENERGY BASIS

Energy content based on LHV = Lower Heating Value

ALLOCATION – ENERGY BASIS

Biodiesel several molecular formula possibilities

Glycerin

 $C_3H_8O_3$

Fatty Acids, Molecular formula	Methyl Esters, Molecular formula	% age	
$C_{16}H_{32}O_2$	C ₁₇ H ₃₄ O ₂	24.5	
$C_{18}H_{32}O_2$	$C_{19}H_{34}O_2$	14.3	
$C_{18}H_{34}O_2$	$C_{19}H_{36}O_2$	37.5	
$C_{18}H_{36}O_2$	$C_{19}H_{38}O_2$	22.5	
$C_{20}H_{40}O_2$	$C_{21}H_{42}O_2$	1.5	

ALLOCATION – ENERGY BASIS

LHV [MJ/kg] = 38.2 mC + 84.9 (mH – mO/8) – Δ Hl, where Δ Hl described latent heat. When the equation applied to gas, liquid and solid fuels, Δ Hl should be 0, 0.5 and 0.62 kJ/g, respectively.

$\sim 16.5 \text{ MJ/kg}$

Modification of Dulong's formula to estimate heating value of gas, liquid and solid fuels, https://doi.org/10.1016/j.fuproc.2016.06.040. (https://www.sciencedirect.com/science/article/pii/S0378382016302995)

Ciências ULisboa **Processes – Esterification/Transesterification**

ALLOCATION – ENERGY BASIS

FAME = 37.2 MJ/kg

2.5.3 Fuel properties

As a summary of the properties of the fuel used for the integration of the Well-To-Wheels pathways and the Tank-To-Wheels ones are detailed in the Table 8:

Table 8. Summary of fuel properties used for the Well-To-Wheels integration (Liquids)

Fuel	Density	RON / CN	LHV	Elemental composition of Carbon	CO ₂ emission factor (Fuel combustion ^{Note})	
	kg/m ³		MJ/kg	%m	g/MJ	kg/kg
Gasoline 2016 (E0)	743	95	43.2	86.4	73.4	3.17
Gasoline 2016 (E5)	746	95	42.3	84.7	73.3	3.10
Gasoline E10	748	95	41.5	82.8	73.3	3.04
Gasoline High Octane. Case 1 (100 RON)	761	100	42.4	84.8	73.3	3.11
Gasoline High Octane. Case 2 (102 RON / E5eq)	759	102	42.4	84.8	73.3	3.11
Gasoline High Octane. Case 3 (102 RON/ E10eq)	759	102	41.6	83.3	73.4	3.05
Pyrolysis-based Naphtha	745	95	43.2	86.4	73.4	3.17
Ethanol	794	108	26.8	52.2	71.4	1.91
Methanol	793	132	19.9	37.5	68.9	1.37
МТВЕ	745	118	35.1	68.2	71.2	2.50
ETBE	750	119	36.3	70.6	71.3	2.59
Diesel (B0)	832	51	43.1	86.1	73.2	3.16
Pyrolysis-based Diesel	832	51	43.1	86.1	73.2	3.2
Diesel B7 market blend	836	53	42.7	85.4	73.4	3.13
FAME	890	56	37.2	77.3	76.2	2.83
ED95	820	n. a.	25.4	49.4	71.3	1.81
FT Diesel	Addit Addit Addit Addit Addit Addit Addit Addit 743 95 43.2 86.4 73.4 3.17 746 95 42.3 88.47 73.3 3.10 748 95 41.5 82.8 73.3 3.04 9R0N) 761 100 42.4 84.8 73.3 3.11 2R0N/ESeq) 759 102 42.4 84.8 73.3 3.11 2R0N/EIOeq) 759 102 41.6 83.3 73.4 3.05 745 95 43.2 86.4 73.4 3.17 794 108 26.8 52.2 71.4 191 793 132 19.9 37.5 66.9 1.37 745 118 35.1 68.2 71.2 250 750 119 36.3 70.6 71.3 251 832 51 43.1 86.1 73.2					
HVO	780	70	44.0	85.0	70.8	3.12
OME	1067	84	19.2	43.5	83.3	1.60

Note) CO2 emission factor refers to the emissions released during the total combustion (full oxidation) of the carbon contained in the fuel molecules (expressed per MJ (or kg) of a certain fuel burnt). Therefore, the factor is not linked to the production process but to the chemical composition, carbon content, of the fuel itself

Estimation of CO₂ emissions from fuel combustion for a given fuel can be summarised as follows:

CO₂ emissions from fuel combustion = Fuel consumption * CO₂ Emission factor.

In the case of fuels from biogenic origin (biofuels), the emissions during combustion can be offset (net zero) as the carbon released during combustion is equal to the carbon captured by the plant/tree during its growing process). See Figure 8.

Glycerin = 16.5 MJ/kg

$C_{3}H_{8}U_{3}$

Prussi, M., Yugo, M., Padella, M., Edwards, R., Lonza, L and De Prada, L., JEC Well-to-Tank report v5: Annexes, Hamje, H., editor, EUR 30269 EN, Publications Office of the European Union, Luxembourg, 2020, ISBN 978-92-76-21707-7, doi:10.2760/06704, JRC119036.

Year?? Which market?? Reference monetary unit...**Bitcoin**....US\$.....€???

https://www.indexmundi.com/commodities/

https://tradingeconomics.com/commodities

Marketplace

🖨 / Datasets / Platts Market Data - Oil

S&P Global Commodity Insights

Year?? Which market?? Reference monetary unit...Bitcoin....US\$.....€???

Fig. 3. Projection of global glycerol production and prices.

Quispe, C. A. G., Coronado, C. J. R., & Carvalho Jr., J. A. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475–493. doi:10.1016/j.rser.2013.06.017

Year?? Which market?? Reference monetary unit...**Bitcoin**....US\$.....€???

REVISITING THE PALM OIL BOOM IN EUROPE AS A SOURCE OF RENEWABLE ENERGY: EVIDENCE FROM TIME SERIES ANALYSIS

Bentivoglio, Deborah; Bucci, Giorgia; Finco, Adele.

Calitatea, suppl. Quality-Access to Success: Acces la Success; Bucharest Vol. 19, Iss. S1, (Mar 2018): 59-66.

Year?? Which market?? Reference monetary unit...Bitcoin....US\$.....€???

Description: Palm oil (Malaysia), 5% bulk, c.i.f. N. W. Europe

BIODIESEL

2002 359 US\$/ton

e.g 2002

2007 661 US\$/ton

$$\frac{359 \text{ US}^{\$}/\text{ton} * \text{ton biodiesel}}{359 \frac{\text{US}^{\$}}{\text{ton}} * \text{ton biodiesel} + 450 \frac{\text{US}^{\$}}{\text{ton}} * \text{ton glycerol}}$$

$$\frac{450 \ US\$/ton * ton \ glycerol}{359 \frac{US\$}{ton} * ton \ biodiesel + 450 \frac{US\$}{ton} * ton \ glycerol}$$

Ciências ULisboa

Oil upgrading ...continuation....

Waste Vegetable Oils

Rendered beef tallow

Rendered poultry fat

• Oil upgrading ...continuation.....

INVENTORY #1

Table A.1

Inventory data for the production of rendered beef tallow (1015 kg).

-	Inputs		Outputs	
-	Materials Cattle by-products	3.60 t	Products Rendered beef tallow	1015.36 kg
	Thermal energy	7631.71 MJ	Emissions to treatment	820.95 Kg
~	Electric energy Transport by lorry	295.10 kWh	Cooking vapours	1765.80 kg
	To rendering plant	561.21 t km		

C Ciências Oil upgrading ...continuation.....

Fig. 1 General beef tallow biodiesel production flowchart

Ciências ULisboa

INVENTORY #2

Int J Life Cycle Assess (2017) 22:1837–1850 DOI 10.1007/s11367-017-1396-6

Table A.2

Inventory data for the production of rendered poultry fat (1013 kg).

Inputs		Outputs	
Materials		Products	
Poultry by-products	4.80 t	Rendered poultry fat	1013.00 kg
Energy		Poultry meal	911.00 kg
Thermal energy	7996.14 MJ	Emissions to treatment	
Electric energy	309.19 kWh	Cooking vapours	2877.00 kg
Transport by lorry			
To rendering plant	748.00 t km		

Boundary enlargement....

С

Boundary enlargement....

С

Boundary enlargement....

Bio-oil upgrading **responsible** for GHG emissions for the Waste-Treatment Unit C Ciências Oil upgrading ...continuation.....

Boundary enlargement....

How to treat wastes IN TERMS OF CARBOON FOOTPRINT?????....

Waste Vegetable Oils

"Wastes and residues, including tree tops and branches, straw, husks, cobs and nut shells, and residues from processing, including crude glycerine (glycerine that is not refined) and bagasse, shall be considered to have **zero life-cycle greenhouse gas emissions** up to the process of collection of those materials irrespectively of whether they are processed to interim products before being transformed into the final product."

Figure 4: Exemplary bioenergy value chain with the flow of sustainability information by means of the GHG intensity.

potential for delivering substantial greenhouse gas emissions savings compared to fossil fuels based on a life- cycle assessment of emissions;

the fossil fuel comparator shall be 94 g CO_2eq/MJ for road vehicles

is saving criteria	29(10)	The GHG emission savings from the use of biofuels, bioliquids and biomass fuels shall be: a) Consumption in the transport sector (biofuels, biogas/biomethane, bioliq- uids): - at least 50% for installations in opera- tion on or before 2015-10-05 - at least 60% for installations starting op- eration between 2015-10-05 and 2020- 12-31 - at least 65% for installations starting op-
ssions s		- at least 65% for installations starting op- eration from 2021-01-01

potential for delivering substantial greenhouse gas emissions savings compared to fossil fuels based on a life- cycle assessment of emissions;

the fossil fuel comparator EF(t) shall be 94 g CO2eq/MJ.

Sustainability Criteria RED II

Source: FNR, according to the Liver ing substantial greenhouse gas emissions savings compared to for the source for a life- cycle assessment of emissions;

the fossil fuel comparator EF(t) shall be 83.8 g CO2eq/MJ no LUC

Land intensive – food competing

Wastes/ Lignocellulose

Not land intensive

2nd gen. (2G)

Not land intensive

3rd gen. (3G)

Genetic modified biomass

Not land intensive

4rd gen (4G)

1st generation (1G)

e.g. palm oil Rapeseed Sunflower Soybean

e.g. tallow Rendered fat Industrial, household and agriculture wastes

e.g. autotrophic, heterotrophic microalgae

e.g. genetic enhanced microalgae for oil production

C Ciências Oil upgrading ...continuation.....

Fossil Fuel Comparator of Biodiesel?

Fossil Fuel Comparator of Biodiesel?

Table 1

Life cycle inventory of the whole refinery (values were presented per function unit).

_	Category	Substance	Unit	Amount
10000 tons of crude oil	Material	Crude oil	t	10000
		Methyl alcohol	t	44.41
		Natural gas	t	1.86
		Water	t	7427.28
		NaOH	t	6.43
		HCI	t	5.92
		Catalyst	t	5.32
		Sodium hypochlorite	t	1.23
		Polyacrylamide	t	0.74
		Liquid ammonia	t	0.46
		Corrosion inhibitor	t	0.22
		Others	t	2.20
Diesel: 3912 t	Energy	Electricity	kwh	565007.51
		Steam	t	-154.17
Gasoline: 3379 t	Emissions to air	PM _{2.5}	t	0.16
Gasonne. 5577 t		PM ₁₀	t	0.17
LDC. (79 +		SO ₂	t	0.71
LPG: 0/8 t		NO _X	t	1.54
		VOCs	t	3.21
Petroleum coke: 667 t		CO	t	7.22
		CO ₂	t	453.21
Coke burning: 396 t		NH ₃	kg	4.32
eone ounning. 570 t		nickel	kg	31.18
Propulana: 272 t	Emissions to water	Wastewater	t	2961.00
Fropylene. 275 t		Oils	kg	1.63
		COD	kg	118
Naphtha: 186 t		Total phosphorus	kg	9.34
-		iotal nitrogen	kg	20.91
Benzene: 47 t		Suinde	kg	0.08
		Nickol	kg	0.00
Sulfur: 37 t 154.17 ton steam		Arcopic	kg	0.50
		Methylbenzene	kg	0.01
		Ethylbonzono	kg	0.17
		Yvlene	kg	0.08
		Renzene	kg	0.18
	Solid waste	Dead catalysts	t	5.04
	JUIU WASIC	Petinery cludge	t t	2.54
		Reinery sludge	t	2.30

41

Biorefinery

Europe demand of crude oil

- a) Consider the origin of the biomass from oil upgrading processes of challenge #2. Enlarge the boundary of your analysis and compute new values of biodiesel and glycerin carbon footprint for beef tallow and poultry fat.
- b) Consider Energy allocation. Compute diesel fossil fuel comparator carbon footprint from the refinery inventory provided.
- c) Compare biodiesel with diesel fossil carbon footprint and estimate the GHG savings, absolute and relative of using, in Europe 6mb/d for a year. Justify the boundary used.

Deadline: 20 April

Delivery: pdf by e-mail camsilva@fc.ul.pt

Ciências ULisboa

Day 6 April: Biorrefinarias com processos de fermentação.

Easter holydays 13 - 19 April

Day 20 April: Visita de estudo projeto GREENFUEL edificio F LNEG.

Day 27 April: Exercises and Challenge biochemical pathway

Ciências ULisboa

Faculdade de Ciências da Universidade de Lisboa